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Abstract

A perturbation approach to the problem of determining

the electromagnetic field reflected from the ionosphere is

presented. It is shown that by treating the earth's field

of magnetic induction as a perturbation, Maxwell's equations

and the constitutive relationship are considerably simplified.

First order approximations for the field reflected from

a homogeneous sharply bounded ionosphere are found.

The perturbation method to be developed has certain

limitations which are discussed.
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i. INTRODUCTION

1.1. The Reflection Problem Formulated

The problem of electromagnetic reflection from the

ionosphere will now be formulated in very general terms.

The coordinate system is arranged such that the z-axis

is vertical and the earth's field of magnetic induction

lies in the x-z plane. The ionosphere is assumed to be

horizontally stratified, non-magnetic, and confined to the

half space z>O. The region z<O is assumed to be free

space. It is also assumed that a known electromagnetic

source is located in the free space region z<O. Let the

source, and therefore the field quantities, have a harmonic

time variation of the form e . Since the ionosphere has

been assumed horizontally stratified, the electron density

and collision frequen-cy will, in general, be a function of

the coordinate z. These functions are assumed to be at least

piece-wise continuous.

For the purposes of ionospheric wave propagation, Max-

well's Equations (MKS units) and the constitutive relation-

ship may be written

V x = id* f
U2! -Y(')-- iUox (3)

I v~~~~ x C I* 2
0

U(. u 2"U 2 Y -u21 Y(Y'O) iu T x 9 (3)

0

2
-Ne e U-l+iv/0.

mm0

!0
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where

N = Electron density

e - Electronic charge

m = Electronic mass

7t Earth's field of magnetic induction

v f Collision frequency

j = Current density of the source

to - Angular frequency

The plane z - 0 is an interface between two media; namely

the ionosphere and free space. If = 0 on the plane z 0 0,

then the tangential components of 3 and H must be continuous

on the plane z = 0.

The problem statement is extremely simple. Given the

current density of the source and an ionospheric model, find

1 and H such that equations (1) and (2) are satisfied and the

tangential components of E and H are continuous on the plane

z = 0.

I.1I General Remarks

Without loss of generality, the source may be replaced

by a point dipole. The dipole field may be represented as an

integral over plane waves
2 '3

A possible method of attack would be to find the field

reflected from the ionosphere when a plane wave is incident

at an arbitrary angle upon the ionosphere. Then, by integra-

tion over the incident angles, the reflected field of a point
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dipole may be obtained. But first a plane wave solution must

be found.

I. III Problemof Obtaining a Plane Wave Solution

A great deal of work has been done with plane waves in

the ionosphere. However, most methods are not of sufficient

generality to be of use in the solution of this problem. It

seems three basic methods of finding solutions for a plane

wave of arbitrary incidence are available; other methods are

seemingly special cases of these three. These methods are

listed below:

1) Booker Quartic I

The ionosphere is first assumed homogeneous. The roots

of the Booker Quartic give the propagation constants. Two of

the roots are associated with the up-going plane waves and the

other two roots are associated with down-going plane waves.

,The solution is extended to an inhomogeneous ionosphere bW

using the W.K.B. approximating technique.

2) First order coupled equations4

Clemmow and Heading present a set of first order coupled

equations for the quantities ExS E, Hx and H The equations
x y x y

uncouple in a homogeneous medium. Keller gives a detailed

method of solving these equations.

3) Integral equation variational technique

A variational technique is presented for the reflection

and transmission matrices. The power of this technique io



that the detailed solution of the fields in the ionosphere

never need be found.

The methods mentioned above have the disadvantage of

being rather laborious. Also the solutions obtained by

these methods involved the angles of incident in a compli-

cated fashion. Hence, the integrals over the resulting plane

waves cannot be evaluated short of numerical means.
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II. DEVELOPMENT OF PERTURBATION METHOD

Maxwell's Equations and the constitutive relationship

are written

Ho -  " (2)

0C
0

Uy2 _U 2 ) 2
u(X U ) - - iu Y x E (3)

0

Treat the parameter Y as a perturbation parameter.

Since T is directly proportional to the earth's field of

magnetic induction I .treating I-jas a perturbation is

equivalent to treating I as a perturbation.

Expanded E, H, and P is a power series in IT] about

I I o

n= 0

n0O
n0

"7 1 Iyn F • (4)

The expansions (4) are substituted into equations (1),

(2), and (3) and the vector coefficients of like powers of

I!1 are equated to obtain the following relations:

VX -n . iqoXn (5)
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+ + - ) = 8o n> O (6)

Uo ()
[-1 = - -

y - 3 (7)

U i= ii x o
"E -- (8)

0

Un _ = u 2 - 2n _(-.n-2)_ iu? x -n-1
X & 0 X e 0 ( 9 )

where 1 n =
bno 0 n0 0

Equations (7), (8), and (9) are used to eliminate Yn from

equation (6). Equation (6) becomes, with nCO:

V x * i. 2- n = -

where

2 1x
tL f

U -

yn = - o (.yn2o )n-i
U U

o rn- 2  n2

U

The problem of finding the solutions of equations (I)

and (2) has been reduced to finding the solution of the follow-

ing infinite set of equations:
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vX n =iq n (I0)

Vx n io2E n =-n (i

The following observations are made:

i) If En is known, then equation (10) may be used to

determine n Hence, only 9n need be found.

2) 3n and In are bounded since I and H are bounded. If

-o7 I = 0 on the plane z = 0, then the tangential com-

ponents of rn and X'n (n >0) must be continuous on the

plane z = 0. The validity of this statement may be

deduced from equations (10) and (11) in the usual manner.

3) yn depends on En-1 and Rn-2. Therefore, if in-l and

I n - 2 are known, yn is known.

4) The equations (10) and (11), which determine yn, take the

form of Maxwell's equation in an isotropic medium with a

source current density fn,

Equations (10) and (11) with n = 0 are used to find E0 .

Once Y° is found, T! is known. Then equations (10) and (11)

are again used but with n - 1 to find il. This process cam

be continued to calculate as many gn,s as desired.

In summary, the problem of finding the solutions of

Maxwell's equations in an anisotropic medium is reduced to

finding the solution ef an infinite set of equations by

treating lY" as a perturbation. The n-th equation of the set

takes the form of Maxwell's equations in an isotropic medium.
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When E and EnI have been determined, In becomes known,

and En can be found. En is subject to the same boundary

conditions as E.

The physical interpretation of the perturbation series

00

!7 j njn is interesting. Eo is the solution of the pro-

n-0

pagation problem with no earth's magnetic field. The terms

I 2 !! etc. are correction terms.

1I.i Limitations of the Perturbation Approach

The convergence properties of the series (4) cannot be

known until the general term is found. In most practical

applications the determination of the general term would be

at best laborious. However, if IYl<<l the first few terms in

the series should be sufficient to represent the solution

accurately. The charge to mass ratio of the electron and the

earth's field of magnetic induction are fixed quantities.

Therefore, the only parameter in I Y that may be varied is co.

Thus, Iifll implies high frequencies.

As has been previously mentioned, equations (10) and (11)

'take the form of Maxwell's equation in an isotropic medium.

However, since p is a function of position the medium is inho-

mogeneouso Thus, the positional dependance of p must be such

that Maxwell's equations can be solved.
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III. PERTURBATION THEORY APPLIED TO A SPECIAL CASE

The ideas developed in the last section will now be used

to find first order correction terms for the field reflected

from a sharply bounded homogeneous ionosphere. Let the

interface between the ionosphere and free space be the plane

z = 0. A vertical point dipole is located at (0, 0, -d).

The earth's field of magnetic induction is assumed to be

vertical. Since the perturbation approximation is applicable

only to high frequencies, collisions will be neglected.

Equations (10) and (11), with n = 0, are

Vx y = iW -g°  
(12)

Vx7 _-i OP 2o + - (13)

where
P2 1 zI - 0 z

j =I 16 ( - )z 0

6(7 - T) = Dirac delta function.

0

1z Unit vector in the z-direction

In general, the symbol 1k will mean a unit vector in the

kt h direction.

If X0 is eliminated from equations (I) and (1 ) the

result is

Vx (V x V) - k 2 tO = in&oi (14)
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k 2 = 0 2 o o 2
k -wo ;L eOI

Let
LF 0

Then it follows from equation (I4) that E* and " must satisfy

V x VxE) - kE * = 0 (15)

Vx (Vx T-) - k2 0 i0oi . (6)
--- O

Let us introduce two new vectors, n and n. defined by

E V(V'7 ) + k2I *  (17)

S=V(V-i) ( k12i -  (18)

Then, from equations (15) and (16),

(V 2 * k2 ) it = 0 (19)

(v 2  k2 )  0 (20)
0 k

0

Since 3 has only a z-component, -tx 0, R 0, andx y

z

From equations (17), (18), and (12) the following express-

ions are found for the field components in cylindrical coordin-

ates:

a ait a an
Er r r z Fr a 19T

E i a a +  1; a ai
"p r za. 7(.az
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k 1 a t k2o
r i(- ° r - r iqt °0 r (p

2k+k 2  8 ft k

He i4L a r He io0 8-

The conditions r Er and E+ =E evaluated at z = 0

imply

(3a 8 t C) C n-- . .. .. z 0 (21)ar r z ar az

a ft C)- az 0 .(22)

Equations (21) and (22) may be integrated with respect to

r and T; respectively. In both cases the constants of integra-
+

tion must be zero since tends to zero as r tends to infinity.

In a similar manner it is found that the conditions

Hr' = Hr' evaluated at z = 0 are satisfied if

2* -

n 2 n n z = 0

Thus it can be concluded that if n- are such that

an _-n z = 0 (23)

2t = R z = 0 (24)

then the tangential components T and "H will be contihuous on

the plane z = 0.
P s

Let x - =it P + U

where

(v 2  2 ) =- UP -21 8(rCo - 7)  (25)

0
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(V 2 + k2 ) is = o (26)

The solution of equation (25) 7 is

o e r0 where r 0 = 1- ld

P0iik or i-

0 0

e

If the Sommerfeld integral representation
7 for e .....

is used, P may be written: 01

i P P 0 J (zr)e - 'z*dj XdK (27)o 0 "

where

p= 0

hit k 2
0

Y =  x 2 -k2

J n(Kr) = Cylindrical Bessel function of the nth order.

Equations (26) and (19) are satisfied if

it = p fS ()J(Kr)e Xd) z< O (28)

+ fO+ -yd o r'-Tzz

= P f We 0()r)e XdX >O

where

j2 (29)

The functions fS0L) and f+(X) must be determined from the

boundary conditions.

The following points should be noted:
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1) The function nP is singular at (0, 0, - d) since the

integral (26) fails to converge at this point. This

singularity is caused by the presence of the dipole.

2) The functions %S and + are continuous throughout the

regions ze0 and z >O.respectively.

3)All three functions obey the Sommerfeid radiation condi-

tion at infinity.

By applying the boundary conditions expressed by

equations (23) and (24) it is found that

f = 2 (30)

P~ Y +Y

s = - (31)
t(m2 YE

These solutions were first obtained by Sommerfeld in his

71909 paper

Let F(X) = Pf (x) e -d

1 o F(x)J ()r)e 'E z)0

Equations (10) and (11) with n = 1 are

(31)

V_ l iwet 2yj 1 * (32)

Eliminating from equations (31) and (32) gives the

result
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V. (G. Yi+) - OR iipT (33)

Vx (Vx -k) 2 1 - 0 (34)
0

where EI z ), 0
11- z>o

We now introduce the vectors T defined by

=V(Vi'4 ) + i

- = V(V i) *

into equations (33) and (34) to obtain the following wave

equations:

(V2 *k 2 ) -1+ o 1(3)
-k

2 2 1 36
(V ko) n - -0 (36)

o= e 0 X Y 0  1 1

x - x E+ + x 1 E +

oxE= z r r z z )z r r

r

Thus equation (35) becomes

2 2 -1.. ri

with +

r 8r az

-i _P -is

Let R = f + n

where
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(V2  2 ) -i - (37)

W + k 2) is 0 (38)

-TP iX e 1 + 1) -1
it 12 11 1 ) dr (39)

E= f F(K) y. Jl(Xr) eE X)d). (4o)
r

The integral in equation (39) may be evaluated by using

the following facts 8,9:

ik ir-711 0
1 1o

. " cos m (_) x j I

ein 6m Co Jo(-( Jm('Xr)Jm(*Kr x

TEe -EZ 1 di.

where

2 m 0

2. J Jm(Xrl)JmCxlr!)rl drI = e(x-')

3. 1 = - x sin (p + Iy cos p .

Ix 00 -FsZ2! =i I oFO,) JI('Xr)q(z)e XE d'k (41)

2 P 2

where

q(z) =

it1 I~ it f0 F(k )J (),r) q(z) eI 5 id..()
Jo 21
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It will be found that in order to satisfy the boundary

conditions, and i will have to have a z-component as

well as a p-component

(0 P lS itS)

I (0, t'

The tangential components of the fields are:

El* I1-2+I

V. l (43)Er

E +=1 a 77"~± *k 2 tlt (44)

HI =r T -P

r iWP0 r23c as

Hit = k 2. (46)i* o  ar

The condition E = Er evaluated at z 0 implies

aV - =-L V.* = o(hIt± i z 0C47)
ar a

Equation (47) is integrated with respect to r to obtain

V."3 1+ V.il- z - 0 . (48)

The constant of integration is zero since VolI tends to zero

as r tends to infinity.

By using the continuity of E1 , equations (44) and (48),

it is found that

ILi *. I- z , - 0 .(49)
(P (
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The continuity of Hl + and equation (46) implies
(P

2 1+ nl
P =tz Y 0 =o .(50)

Finally, by using equations (45) and (50) and the

continuity of H it is found that
r'

2 o . _z - , z ( i)

The following two boundary conditions are used to

determine the arbitrary functions that will appear in the

integral representation of nl :
(P

2 1+ I-R( R T

z - . (52)

z a,

C ~a z

When n( has been found, the two boundary conditions

z = 0 (53)
2-1+ 1-

z z

are used to find the arbitrary functions that will appear in

the integral representations of uI  .z

It may be verified by direct substitution that the

relations

iS ix O GS(X)JIXr) - XE Xd),z > 0

1 G(X)JI(,r) e XdX, d I z<0
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it f iX "(X--)J(Xr) e EXdX, z> 0"z 212 j
-2, 1 .,<'

satisfy equations (38) and (36) if GS(X), G (), *(x), and

t-(L) are integrable functions.

The boundary conditions (52) and (53) are used to find:

-( =0

2 2 ()

G +(X) -i 1F ])O
°+ =[- y - -IF'j

Since the fields in the region I di >,jzj z<0 are the

observable quantities, the fields in the region z>0 will not

be considered further, except to mention that lim =
X-'l

However, lim I* is a finite quantity.

-y(d-z)

III rP X dX, (IdI>[j) (s! ). (54 )

Since 3 = 1 it- and is not a function of 4;

Y! op k 0 1 i  . Thus a first order correction term for the

reflected field has been found.

The integral (54) must now be evaluated.

Let d - z=



-19-

Since Q(W) is an even function of X and

2Jl()r) - H(l) ()r) + H1l ) (-kr), integral (54) may be

written

2- = i_ f Q(X) H,1) (Kr) e dK (55)

where Hl) (Xr) is the Hankel function of the first kind.

The integral is not yet uniquely determined because there

are branch points at X = *k 0 and X = 1k. The integrand is

made unique by introducing branch cuts. These cuts and the

path of integration are shown in Fig. I under the assumption

that p <1.

With the plane cut as shown, th-e poles of the function

Q) lie on the second Riemann sheet.

In general the integral (55) is difficult to evaluate.

Therefore, the problem will be simplified further by assuming:

1) Since the reflected field is of interest when

z is comparable to d, and d is very large as compared

to a free space wave-length (perturbation theory is

only applicable to high frequencies), C is large and

positive.

2) Since reflections occur in that region of the

ionosphere where the electron density is such that

S-" i, the limit of equation (55) as X tends to unity

will be taken. It is assumed that the limit may be
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taken inside the integral.

Then equation (55) becomes

1- iP ) r e d (56)

where

Q 1W) - lim Q(X) -

X41 
-Y

By using the asymptotic form of the Hankel function and

the substitution X- k 0sin 8, the integral (56) is trans-

formed to

Pk in [/2-ioo _ieeikor sine+tcos8]
i- fV______e

n --- e sin e cos e de.
-n/2+ia qk o 0r sin e

(57)

This integral may be approximated by using the saddle

point method. To this end, let r - R sin a and E - R cos a

to transform (57) to

1- Pko 2" i o. in e i  ik R cos (e)-a)

-= Tj2 . e sin E r 0 e 0
C (55)

where the contour C begins at - n/2 + a + i and ends at

x/2 * a - i •

Let

(e) - ik R cos (0 - a)

, (e) =- ik0 R sin (e - ) = 0
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Therefore, there is a saddle point at e = = a.

# (9) ik R cos (e - a)

in the neighborhood of the saddle point

ik R
O ik R -0o (e - )25)

o 2

(e-a) i ev

ikR s
q(e ) - ik R - (cos 2 v i sin 2 v)

k R0 2
Im (e) = k 0R 20 s 2cos 2 v .

The contour C must be deformed into a contour C' which

has the property that along C' Im 9(e) Im qp(a). In the

neighborhood of the saddle point this condition requires

v = t R/4. The sign of v is chosen such that Re(G)< 0 when

s >0. In this way it is found that v = - n/4. The contour

C 'is shown in Fig. II.

From equation (59) equation (58) becomes
k Rko R 2 inin V ik R =Ts -- d

ki T-isi cp0 e 0 2 VF
isin cos e e e e - e ds

I C, e sine
0

Hence, to a good approximation)
kcR

_ in OD-a o'C _ek~-s 2
k i n a-o ia 0k0 2s

i - e e sin a cos a e ds

it iko0R

it e 2 cos a e
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The use of the asymptotic form of the Hankel function

is justified if k r sin a>>l. Because of the way in which0
1-

the angle a was defined, it is seen that n takes the form

of a spherical wave centered about the dipole image located

at (0, 0, * d) .

In summary, the expression (60) holds if:

1. X = 1

2. R>1l and k r sin a>>l.

o

Since lim fS(X) = _1

ik R

RS 
P e 0

Therefore, in the region Idi 4 z I z <0, the total

reflected n vector may be written

ik R

It -P [ z *c . (61)

Th-e reflected field intensity K may be obtained by

operating on tR byV(V) k~0
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IV. POLARIZATION OF THE H VECTOR

The polarization of the reflected field is of some

interest. In what follows it proves convenient to introduce

standard spherical coordinates. This change is easily made

in equation (61) by replacing a by n-0 where e is the co-

latitude. With these changes equation (61) becomes

i( + n/2) ik
i - - P * IY e cos e - . (62)

it should be noted that these angles are measured with

respect to a coordinate system whose origin is at the image

point (0, 0, * d).

Since 1Iz = 1R Cos e - 18 sin 8, the components of the

reflected n vector are

ik R
0

R - p Cos 0 e o

ik R

= P sin 
i e

eR-

iC4L
I Y I i ~ e +  it / 2 ) c o s _ e e -k._ R .

Using the definition of the quantity P = 12 I and
4k2

k 2  0

0 x n H the components of H in the radiation region

0

are found to be

ikR

H =ikoeII cos ei (e /2)e
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ikl ~ ik Rik I ok0

Hf 0 sine e

Thus

-Hi1Ot -ki1 l
ReHe e Cos e cos (koR + e + -t)

" O sin e cos (k R + cot)

Let * be the angle between - 1, and the major axes of the

polarization ellipse.

After a simple calculation it is found that1 O

2 ,.TY sin 2e cos e

tan 2* = - 2 2 -I~I cs~ -sin e
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V. SUMMARY

It has been shown that by treating the earth's magnetic

field of induction as a perturbation, Maxwell's equations and

the constitutive relation axe simplified. The partial

differential equations which determine the n'th coefficient

of YIn take the form of Maxwell's equations in an isotropic

medium. However, the medium is still inho-mogeneous. Since,

in general, it is not practicable to calculate correction

terms of order greater than the first, the frequency must be

high.

A first order correction term has been found for the

vector reflected from a sharply bounded homogeneous ionosphere.

The earth's magnetic field was assumed to be vertical and the

source was taken to be a vertical point dipole located in free

space a distance d below the interface.

The correction term is expressed in terms of a Fourier-

Bessel integral. In order to evaluate this integral, the

limit as X tends to unity was taken and the saddle point

method was applied. Finally the angle between - 1 and the

major axes of the polarization ellipse of the reflected H

vector was stated.
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